Abstract
Identifying network attacks is a very crucial task for Internet of things (IoT) security. The increasing amount of IoT devices is creating a massive amount of data and opening new security vulnerabilities that malicious users can exploit to gain access. Recently, the research community in IoT Security has been using a data- driven approach to detect anomaly, intrusion, and cyber-attacks. However, getting accurate IoT attack data is time-consuming and expensive. On the other hand, evaluating complex security systems requires costly and sophisticated modeling practices with expert security professionals. Thus, we have used simulated datasets to create different possible scenarios for IoT data labeled with malicious and non-malicious nodes. For each scenario, we tested off a shelf machine learning algorithm for malicious node detection. Experiments on the scenarios demonstrate the benefits of the simulated datasets to assess the performance of the ML algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.