Abstract

Federated learning is a privacy-preserving machine learning framework where multiple data owners collaborate to train a global model under the orchestra of a central server. The local training results from trainers should be submitted to the central server for model aggregation and update. Busy central server and malicious trainers can introduce the issues of a single point of failure and model poisoning attacks. To address the above issues, the trusty decentralized federated learning (called TrustDFL) framework has been proposed in this paper based on the zero-knowledge proof scheme, blockchain, and smart contracts, which provides enhanced security and higher efficiency for model aggregation. Specifically, Groth 16 is applied to generate the proof for the local model training, including the forward and backward propagation processes. The proofs are attached as the payloads to the transactions, which are broadcast into the blockchain network and executed by the miners. With the support of smart contracts, the contributions of the trainers could be verified automatically under the economic incentive, where the blockchain records all exchanged data as the trust anchor in multi-party scenarios. In addition, IPFS (InterPlanetary File System) is introduced to alleviate the storage and communication overhead brought by local and global models. The theoretical analysis and estimation results show that the TrustDFL efficiently avoids model poisoning attacks without leaking the local secrets, ensuring the global model’s accuracy to be trained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.