Abstract

This paper presents an trust-region filtered sequential convex programming (TRF-SCP) to reduce computational burdens of multi-UAV trajectory planning. In TRF-SCP, the trust-region based filter is proposed to remove the inactive collision-avoidance constraints of the convex programming subproblems for decreasing the complexity. The inactive constraints are detected based on the intersection relations between trust regions and collision-avoidance constraints. The trust-region based filter for different types of obstacles are tailored to address complex scenarios. An adaptive trust-region updating mechanism is also developed to mitigate infeasible iteration in TRF-SCP. The sizes of the trust regions are automatically adjusted according to the constraint violation of the optimized trajectory during the SCP iterations. TRF-SCP is then tested on several numerical multi-UAV formation scenarios involving cylindrical, spherical, conical, and polygon obstacles, respectively. Comparative studies demonstrate that TRF-SCP eliminates a large number of collision-avoidance constraints in the entire iterative process and outperforms SCP and Guaranteed Sequential Trajectory Optimization in terms of computational efficiency. The indoor flight experiments are presented to further evaluate the practicability of TRF-SCP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.