Abstract

The aim of this study was to investigate the position and velocity dependency of the strength (torque) output of lateral flexor muscles of the trunk. Twelve male volunteers with no history of back pain participated. Movement was constrained to the frontal plane and the velocity was controlled by an isokinetic dynamometer. The eccentric and concentric strength of lateral flexor muscles on the left side was measured in a supine position at velocities of 15, 30, 45 and 60 degrees x s(-1) and static strength at 20, 10, 0, -10 and -20 degrees of lateral trunk flexion. Average peak torque values ranged between 211 and 218 Nm (eccentric) and between 66 and 140 Nm (concentric) over all tested velocities, and the average static torque ranged between 80 and 172 Nm over all tested positions. The shape of the torque position curves was unaffected by speed and peak torque occurred at an average position of 11-15 degrees to the contralateral (right) side in both eccentric and concentric actions. In eccentric actions, torque output was significantly higher than that during concentric and static actions. Increasing the speed of contraction did not affect eccentric torque values, whereas both peak and angle-specific concentric torque decreased with increasing speed. These results are in general accordance with earlier findings from other muscle groups, such as the knee extensors. However, they are partially at variance with results obtained in studies of lateral lifting and lowering, indicating that there are other limiting factors in complex tasks that do not just involve the trunk muscles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.