Abstract
Nonlinear interferometers that replace beam splitters in Mach-Zehnder interferometers with nonlinear amplifiers for quantum-enhanced phase measurements have drawn increasing interest in recent years, but practical quantum sensors based on nonlinear interferometry remain an outstanding challenge. Here, we demonstrate the first practical application of nonlinear interferometry by measuring the displacement of an atomic force microscope microcantilever with quantum noise reduction of up to 3dB below the standard quantum limit, corresponding to a quantum-enhanced measurement of beam displacement of 1.7 fm/sqrt[Hz]. Further, we minimize photon backaction noise while taking advantage of quantum noise reduction by transducing the cantilever displacement signal with a weak squeezed state while using dual homodyne detection with a higher power local oscillator. This approach may enable quantum-enhanced broadband, high-speed scanning probe microscopy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.