Abstract

Unconventional fluorescent polymers have attracted increasing attention due to their facile synthesis, excellent biocompatibility, and novel photophysical properties. In this work, a truly multicolor emissive hyperbranched polysiloxane (HBPSi-β-CD) is obtained through adjusting the distribution of electron-rich atoms and grafting β-cyclodextrin; the quantum yields of HBPSi-β-CD after being excited by 360, 420, 450, and 550 nm are 19.36, 31.46, 46.14 and 44.84%, respectively. The density functional theory calculations reveal that the truly multicolor emission is derived from the formed electron delocalization among the hydroxyl, amine, ether, and -Si(O)3 groups due to the strong intermolecular interaction, high density of electron-rich atoms, and low steric hindrance among functional groups. The prepared polymers could serve as a multisensitivity sensor in detecting Fe3+, Cu2+, and Co2+. The HBPSi-β-CD shows low cytotoxicity and excellent cellular imaging capability. The self-assembly of HBPSi-β-CD also possesses high drug loading capacity and pH-controlled drug release, especially, the drug delivery system could be applied in the visualization of controlled drug delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.