Abstract

We consider a hub-based platoon coordination problem in which vehicles arrive at a hub according to an independent and identically distributed stochastic arrival process. The vehicles wait at the hub, and a platoon coordinator, at each time-step, decides whether to release the vehicles from the hub in the form of a platoon or wait for more vehicles to arrive. The platoon release time problem is modeled as a stopping rule problem wherein the objective is to maximize the average platooning benefit of the vehicles located at the hub and there is a cost of having vehicles waiting at the hub. We show that the stopping rule problem is monotone and the optimal platoon release time policy will therefore be in the form of a one time-step look-ahead rule. The performance of the optimal release rule is numerically compared with (i) a periodic release time rule and (ii) a non-causal release time rule where the coordinator knows all the future realizations of the arrival process. Our numerical results show that the optimal release time rule achieves a close performance to that of the non-causal rule and outperforms the periodic rule, especially when the arrival rate is low.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.