Abstract

Ternary neural networks (TNNs) are potential for network acceleration by reducing the full-precision weights in network to ternary ones, e.g., {-1,0,1}. However, existing TNNs are mostly calculated based on rule-of-thumb quantization methods by simply thresholding operations, which causes a significant accuracy loss. In this paper, we introduce a stem-residual framework which provides new insight into Ternary quantization, termed Residual Quantization (TRQ), to achieve more powerful TNNs. Rather than directly thresholding operations, TRQ recursively performs quantization on full-precision weights for a refined reconstruction by combining the binarized stem and residual parts. With such a unique quantization process, TRQ endows the quantizer with high flexibility and precision. Our TRQ is generic, which can be easily extended to multiple bits through recursively encoded residual for a better recognition accuracy. Extensive experimental results demonstrate that the proposed method yields great recognition accuracy while being accelerated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.