Abstract
The remote impact of tropical Atlantic sea surface temperature (SST) variability on Korean summer precipitation is examined based on observational data analysis along with the idealized and hindcast model experiments. Observations show a significant correlation (i.e. 0.64) between Korean precipitation anomalies (averaged over 120–130°E, 35–40°N) and the tropical Atlantic SST index (averaged over 60°W–20°E, 30°S–30°N) during the June–July–August (JJA) season for the 1979–2010 period. Our observational analysis and partial-data assimilation experiments using the coupled general circulation model demonstrate that tropical Atlantic SST warming induces the equatorial low-level easterly over the western Pacific through a reorganization of the global Walker Circulation, causing a decreased precipitation over the off-equatorial western Pacific. As a Gill-type response to this diabatic forcing, an anomalous low-level anticyclonic circulation appears over the Philippine Sea, which transports wet air from the tropics to East Asia through low-level southerly, resulting an enhanced precipitation in the Korean peninsula. Multi-model hindcast experiments also show that predictive skills of Korean summer precipitation are improved by utilizing predictions of tropical Atlantic SST anomalies as a predictor for Korean precipitation anomalies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.