Abstract

Growth/differentiation factor 5 (GDF5) is a novel member of the transforming growth factor-beta (TGF-beta) superfamily of multifunctional cytokines. We show here that GDF5 is expresed in the developing CNS including the mesencephalon and acts as a neurotrophic, survival promoting molecule for rat dopaminergic midbrain neurons, which degenerate in Parkinson's disease. Recombinant human GDF5 supports dopaminergic neurons, dissected at embryonic day (E) 14 and cultured for 8 days under serum-free conditions, to almost the same extent as TGF-beta 3, and is as effective as glial cell line-derived neurotrophic factor (GDNF), two established trophic factors for midbrain dopaminergic neurons. In contrast to TGF-beta and GDNF, GDF5 augments numbers of astroglial cells in the cultures, suggesting that it may act indirectly and through pathways different from those triggered by TGF-beta and GDNF. GDF5 also protects dopaminergic neurons against the toxicity of N-methylpyridinium ion (MPP+), which selectively damages dopaminergic neurons through mechanisms currently debated in the etiology of Parkinson's disease (PD). GDF5 may therefore now be tested in animal models of PD and might become useful in the treatment of PD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.