Abstract
In this paper an improvement of the optimally pruned extreme learning machine (OP-ELM) in the form of a L 2 regularization penalty applied within the OP-ELM is proposed. The OP-ELM originally proposes a wrapper methodology around the extreme learning machine (ELM) meant to reduce the sensitivity of the ELM to irrelevant variables and obtain more parsimonious models thanks to neuron pruning. The proposed modification of the OP-ELM uses a cascade of two regularization penalties: first a L 1 penalty to rank the neurons of the hidden layer, followed by a L 2 penalty on the regression weights (regression between hidden layer and output layer) for numerical stability and efficient pruning of the neurons. The new methodology is tested against state of the art methods such as support vector machines or Gaussian processes and the original ELM and OP-ELM, on 11 different data sets; it systematically outperforms the OP-ELM (average of 27% better mean square error) and provides more reliable results – in terms of standard deviation of the results – while remaining always less than one order of magnitude slower than the OP-ELM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.