Abstract
A strong non-stoichiometry of pure fcc CeO2 was induced by laser irradiation. The increase of laser power and/or energy density had a saturable effect on particle size growth. The possibility of CeO2 reduction to A-Ce2O3 by laser irradiation was demonstrated. Particles of stable Ce7O12 phase were observed in all specimens irradiated at low laser-power densities. An epitaxial relationship between triclinic Ce11O20 and cubic Ce12O22 phases was found. The controversial C-Ce2O3 phase was detected at the limits of a bcc particle. An unknown bcc phase of acicular morphology, strongly related to C-Ce2O3, was also registered. The dose dependence of CeO2 structural modifications obtained by laser irradiation as a function of laser energy density variation could be explained by a simple defect aggregation model implying lattice defects (oxygen vacancies and Ce3+ ions).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.