Abstract

The human neuropeptide neuromedin S (NMS) consists of 33 amino acids. The introduction of tritium atoms into NMS has not been described so far. This represents a gap for using [3H]NMS in radioreceptor binding assays or in tracking and monitoring their metabolic pathway. Two approaches for the incorporation of tritium into NMS were explored in this study: (1) halogenation at the His-18 residue followed by catalyzed iodine-127/tritium exchange and (2) conjugation of tritiated N-succinimidyl-[2,3-3H3]propionate ([3H]NSP) to at least one of the three available primary amines of amino acids Ile-1, Lys-15, and Lys-16 in the peptide sequence. Although iodination of histidine was achieved, subsequent iodine-127/deuterium exchange was unsuccessful. Derivatization at the three possible amino positions in the peptide using nonradioactive NSP resulted in a mixture of unconjugated NSM and 1- to 3-conjugations at different amino acids in the peptide sequence. Each labeling position in the mixture was assigned following detailed LC-MS/MS analysis. After separating the mixture, it was shown in an in vitro fluorometric imaging plate reader (FLIPR) and in a competitive binding assay that the propionyl-modified NMS derivatives were comparable to the unlabeled NMS, regardless of the degree of labeling and the labeling position(s). A molecular simulation with NMS in the binding pocket of the protein neuromedin U receptor 2 (NMUR2) confirmed that the possible labeling positions are located outside the binding region of NMUR2. Tritium labeling was achieved at the N-terminal Ile-1 using [3H]NSP in 7% yield with a radiochemical purity of >95% and a molar activity of 90 Ci/mmol. This approach provides access to tritiated NMS and enables new investigations to characterize NMS or corresponding NMS ligands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.