Abstract

Metal surface defect segmentation can play an important role in dealing with the issue of quality control during the production and manufacturing stages. There are still two major challenges in industrial applications. One is the case that the number of metal surface defect samples is severely insufficient, and the other is that the most existing algorithms can only be used for specific surface defects and it is difficult to generalize to other metal surfaces. In this work, a theory of few-shot metal generic surface defect segmentation is introduced to solve these challenges. Simultaneously, the Triplet-Graph Reasoning Network (TGRNet) and a novel dataset Surface Defects- 4 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">i</sup> are proposed to achieve this theory. In our TGRNet, the surface defect triplet (including triplet encoder and trip loss) is proposed and is used to segment background and defect area, respectively. Through triplet, the few-shot metal surface defect segmentation problem is transformed into few-shot semantic segmentation problem of defect area and background area. For few-shot semantic segmentation, we propose a method of multi-graph reasoning to explore the similarity relationship between different images. And to improve segmentation performance in the industrial scene, an adaptive auxiliary prediction module is proposed. For Surface Defects- 4 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">i</sup> , it includes multiple categories of metal surface defect images to verify the generalization performance of our TGRNet and adds the nonmetal categories (leather and tile) as extensions. Through extensive comparative experiments and ablation experiments, it is proved that our architecture can achieve state-of-the-art results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.