Abstract

Triplet-state-mediated super-resolution imaging was used to map the positions of fluorescently labeled double-stranded DNA bound to the surface of gold nanorods. In order to isolate individual fluorophores bound to the nanorod surface, imaging conditions were optimized such that the majority of the fluorophores were forced into a triplet dark state, and fluorescence from approximately one molecule at a time was detected. The fluorescence from the emitting single molecule was then fit to a two-dimensional (2D) Gaussian to localize its position relative to the nanorod substrate. The reconstructed super-resolution images showed excellent agreement with the shape and orientation of the nanorods, although, based on correlated atomic force microscopy, they consistently under-estimated nanorod size. The apparent DNA ligand binding on the gold nanorod surface showed significant heterogeneity, with examples of preferential binding to nanorod ends, uniform binding across the nanorod surface, and site-specific binding to a single end of the nanorod. This heterogeneity would be hidden in a typical ensemble or diffraction-limited measurement, highlighting the need for single nanoparticle super-resolution imaging studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.