Abstract
Let L, L′ be Lie algebras over a commutative ring R. A R-linear mapping f: L → L′ is called a triple homomorphism from L to L′ if f([x, [y, z]]) = [f(x), [f(y), f(z)]] for all x, y, z ∈ L. It is clear that homomorphisms, anti-homomorphisms, and sums of homomorphisms and anti-homomorphisms are all triple homomorphisms. We proved that, under certain assumptions, these are all triple homomorphisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.