Abstract
Heteronuclear transition-metal-main-group-element carbonyl complexes of AsFe(CO)3- , SbFe(CO)3- , and BiFe(CO)3- were produced by a laser vaporization supersonic ion source in the gas phase, and were studied by mass-selected IR photodissociation spectroscopy and advanced quantum chemistry methods. These complexes have C3v structures with all of the carbonyl ligands bonded on the iron center, and feature covalent triple bonds between bare Group 15 elements and Fe(CO)3- . Chemical bonding analyses on the whole series of AFe(CO)3- (A=N, P, As, Sb, Bi, Mc) complexes indicate that the valence orbitals involved in the triple bonds are hybridized 3d and 4p atomic orbitals of iron, leading to an unusual (dp-p) type of transition-metal-main-group-element multiple bonding. The σ-type three-orbital interaction between Fe 3d/4p and Group 15 np valence orbitals plays an important role in the bonding and stability of the heavier AFe(CO)3- (A=As, Sb, Bi) complexes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.