Abstract

BackgroundsPreeclampsia (PE) is characterized as placental vascular disturbance and excessive secretion of soluble fms-like tyrosine kinase 1 (sFlt-1) into the maternal circulation. Trimethylamine N-oxide (TMAO, a gut microbe-derived metabolite) is strongly associated with various cardiovascular and cerebrovascular diseases. Recently, we observe that higher maternal circulating TMAO and sFlt-1 in patients with PE. The aims of the present study are to explore the effects of TMAO on placental sFlt-1 production and the underlying mechanism in human placenta. MethodsHuman placental explants, human placental primary trophoblasts and the extravillous trophoblasts (EVT) cell line (HRT-8/SVneo) were exposured to various concentrations of TMAO (100, 150, 300, and 600 μM). The mRNA expression and protein secretion of sFlt-1 in placental explants, primary trophoblasts and HRT-8/SVneo cells were determined with qPCR and ELISA, respectively. The levels of intracellular reactive oxygen species (ROS) production in primary trophoblasts and HRT-8/SVneo cells were measured by peroxide-sensitive fluorescent probe dichlorofluorescein diacetate. ResultsExposure of placental explants, primary trophoblasts and HRT-8/SVneo cells to TMAO significantly enhanced sFlt-1 at both mRNA and protein levels in a dose dependent manner. Moreover, inhibition of NADPH oxidase with apocynin significantly attenuated TMAO-induced ROS production in primary trophoblasts and HRT-8/SVneo, and suppressed sFlt-1 secretion in placental explants, primary trophoblasts and HRT-8/SVneo. ConclusionsOur findings indicated the NADPH oxidase dependent ROS pathway played a critical role in mediating TMAO-induced sFlt-1 generation in human placenta. TMAO may become a potential novel target for pharmacological or dietary interventions to reduce the risk of developing PE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.