Abstract
We discuss here how the trigonal warping effect of the electronic structure is relevant to optical processes in graphite and carbon nanotubes. The electron-photon, electron-phonon, and elastic scattering matrix elements have a common factor of the coefficients of Bloch wave funtions of the A and B atoms in the graphite unit cell. Because of the three fold symmetry around the Fermi energy point (the K or K′ point), the matrix elements show a trigonal anisotropy which can be observed in both resonance Raman and photoluminescence spectroscopy. This anisotropy is essential for understanding the chirality dependence of the Raman intensity and the optical response of single wall carbon nanotubes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.