Abstract

This study aimed to investigate the influence of the fungus Trichoderma asperellum on photosynthesis and nitrogen metabolism in maize seedlings of different genotypes, subjected to saline–alkaline stress. Saline–alkaline tolerant and sensitive varieties, Jiangyu 417 and Xianyu 335 (XY335), respectively, were grown in naturally saline–alkaline soil (pH 9.30) in 5-inch pots. Root and leaf samples were collected when seedlings had three heart-shaped leaves and the fourth leaf developing. Meadow soil (pH 8.23) was used as a positive control. Saline–alkaline stress remarkably increased NH4+ content and caused ammonia toxicity, weakened the ammonium assimilation process, and reduced photosynthesis in maize seedlings. Our results show that T. asperellum alleviated these effects to a certain degree, especially in XY335. The application of T. asperellum likely improved the content of photosynthetic pigments, enhanced the photochemical activity of the photosystem II reaction center, increased the activities of ATP enzymes in the chloroplasts, reduced the non-stomatal limitation of photosynthesis owing to saline–alkaline stress, and promoted photosynthesis to provide more raw materials and energy for nitrogen metabolism, thereby improving the activity of nitrogen metabolism and the capacity for material production in maize seedlings. By coordinating the synergistic effect of glutamate dehydrogenase, glutamine synthetase/glutamate synthase, and transamination, T. asperellum promoted the assimilation of excessively accumulated ammonia, maintained the balance of NH4+ and the enzymes related to its metabolism, and subsequently alleviated ammonia toxicity and negative changes in nitrogen metabolism resulting from saline–alkaline stress. Thus, the application of T. asperellum alleviated damage to chloroplasts and thylakoid membranes, and improved nitrogen metabolism, thereby promoting seedling growth. The concentration of 1 × 109 spores L−1 was found to be the most effective and economical treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.