Abstract

Tricellulin, a member of the tight junction-associated MAGUK protein family, preferentially localizes to tricellular junctions in confluent polarized epithelial cell layers and is downregulated during the epithelial-mesenchymal transition. Posttranslational modifications are assumed to play critical roles in the process of downregulation of tricellulin at the protein level. Here, we report that the E3 ubiquitin ligase Itch forms a complex with tricellulin and thereby enhances its ubiquitination. Pull-down assays confirmed a direct interaction between tricellulin and Itch, which is mediated by the Itch WW domain and the N-terminus of tricellulin. Experiments in the presence of the proteasome inhibitor MG-132 did not show major changes in the levels of ubiquitinated tricellulin in epithelial cells, suggesting that ubiquitination is not primarily involved in proteasomal degradation of tricellulin, but it appears to be important for endocytosis or recycling. In contrast, in HEK-293 cells, MG-132 caused polyubiquitination. Moreover, we observed that well-differentiated RT-112 and de-differentiated Cal-29 bladder cancer cells show an inverse expression of tricellulin and Itch. We postulate that ubiquitination is an important posttranslational modification involved in the determination of the intracellular fate of tricellulin deserving of more detailed further investigations into the underlying molecular mechanisms and their regulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.