Abstract

ABSTRACTHard, adherent, and low-friction silicon-containing diamond-like carbon coatings (Si-DLC) have been synthesized at room temperature by 40 keV (N+ plus N2+), 50%Ar+/50% (N+ plus N2+), and Ar+ ion beam assisted deposition (IBAD) of a tetraphenyl-tetramethyl-trisiloxane oil on silicon and sapphire substrates. X-ray diffraction analysis indicated that all coatings were amorphous. The average coating wear rate and the average unlubricated steel ball-on-disk friction coefficient, μ, decreased with increasing fraction of nitrogen in the ion beam, along with an increase in the average coating growth rate. The Knoop microhardness and nanohardness values of the coatings synthesized by the mixed argon and nitrogen ion beam were higher than the values for the coatings synthesized with 100% nitrogen or 100%argon ion beams. These friction/wear improvements are tentatively attributed to both increased hardening due to greater penetration and ionization induced hardening by the lighter (N) ions and to the presence of Si02 on the surface of N-bombarded samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.