Abstract
High modulus of about 1 TPa, high thermal conductivity of over 3000 W/mK, very low coefficient of thermal expansion (CTE), high electrical conductivity, self-lubricating characteristics and low density have made CNTs one of the best reinforcing materials of nano composites for advanced structural, industrial, high strength and wear-prone applications. This is so because it has the capacity of improving the mechanical, tribological, electrical, thermal and physical properties of nanocomposites. So, this study is aimed at providing the latest discoveries on the tribological behavior of CNTs-reinforced composites. The composites reviewed included metal matrix composites (MMCs), polymer matrix composites (PMCs) and ceramic matrix composites (CMCs) reinforced with CNTs. Their tribological characteristics, uses, production challenges, conclusion and recommendations are presented. The work presented the best technique to disperse CNTs on matrices to avoid its agglomeration, since agglomeration is one of the major challenges in reinforcing with CNTs. It was discovered that ball milling destroys the outer walls of CNTs but recommended that ultrasonication and functionalization before ball milling eliminate this adverse effect of ball milling. In addition, it was discovered that addition of CNTs to composite matrices improved the wear resistance, reduced the wear volume, decreased the coefficient of friction (COF) and provided self-lubricating effect on MMCs, PMCs and CMCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.