Abstract

In the area of tribology, surface roughness has become one of the most important factors that contributed to the evaluation of part quality during machining operation. In order to understand the behavior of cryogenic cooling assistance in machining Inconel 718, this paper aims to provide better understanding of tribological characterization of liquid nitrogen near the cutting zone of this material in milling process. Experiments were performed using physical vapor deposition (PVD) - coated carbide inserts under cryogenic and dry cutting condition. The cryogenic results of the cutting temperature, cutting forces and surface roughness of the ball nose cutting tool have been compared with those of dry machining. Finally, experimental results proved that cryogenic implementation can decrease the amount of heat transferred to the tool up to almost 70% and improve the surface roughness to a maximum of 31% when compared with dry machining.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.