Abstract

In this work, the resistance to scratch and wear (pin-on-flat) tests of five different porous TiO2 films were compared. Such tribological tests were carried out under dry conditions. The coatings were electrodeposited on commercially pure-Ti by anodic oxidation method in different electrolyte solutions at constant voltages. The scratch tests were conducted by applying increasing normal loads up to 400 mN. The coefficient of friction (COF) varied from 0.2 up to 0.5, and increased at larger penetrations depths. When the electrolyte concentration was changed from 0.5 into 1.0M H2SO4, the COF slightly decreased. Scanning electron microscopy indicated that the coatings produced in H2SO4/150V and Na2SO4/100V did not have their substrates revealed. In addition, the samples anodized in H2SO4/150V had the highest elastic recoveries. Therefore, such coatings seem to be more resistant to scratch tests than the others. The wear tests were carried out with Berkovich tip as counter-face under constant normal loads of 10 mN in 10 forward-backward cycles. The coatings deposited in H2SO4/150V had the lowest wear volume rates. The findings suggest that the porous Ti oxide coatings electrodeposited above their rupture voltages are more suitable to both scratch- and wear-resistance compared to those prepared at the lowest voltage (H2SO4/100V).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.