Abstract

In this research work, the tribological behaviour of an AZ91D alloy and its composites reinforced with different titanium-based ultra-high-temperature ceramic particulates was investigated. Titanium-based ultra-high-temperature ceramic materials (5 wt%) such as titanium carbide, titanium boride and titanium nitride was used for the fabrication of three different composites, namely ATC, ATB and ATN, respectively. The proposed composites were prepared using a novel ultrasonic treatment-assisted stir-squeeze casting technique. Material characterization was performed using scanning electron microscopy and X-ray diffraction techniques. The porosity and hardness of the composites were determined prior to the wear test. In the pin-on-disc tribometer, the wear test was carried out at room temperature by varying the normal load (12.5–50 N) and the sliding speed (0.25–1 m/s). In addition, at a temperature of up to 200 °C, the tribological behaviour of the composites was assessed. The homogeneous distribution of ultra-high-temperature ceramic particles in the matrix was confirmed by the analysis of the microstructure using scanning electron microscopy images. The X-ray diffraction results showed that the reinforcement materials in the matrix were thermally stable. The hardness of the ATC, ATB and ATN was improved by approximately 31%, 33.8% and 29.6%, respectively. In comparison, at all wear testing conditions, ATB demonstrated superior tribological performance, while the performance of ATN was poor and ATC was moderate. Abrasion, oxidation and delamination were the wear mechanisms at room temperature. At elevated temperatures, oxidation, delamination, thermal softening and plastic deformation wear mechanisms were significant..

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.