Abstract
High-performance polymer friction materials with tunable tribological behavior to fit varied work conditions remain a challenge of widespread interest for a variety of applications. Shape memory polymer exhibits morphing and modulus changing over temperature changing provides a promising material to adjust the friction process. Herein, we investigated the tribological properties of shape memory cyanate ester (SMCE) under different conditions. The SMCE exhibits the tribological behavior of good friction material with stable high coefficient of friction (COF) and a low wear rate. Besides, the COF increases and wear rate decreases with the temperature increasing show the tunable friction property of the SMCE. We propose a new model of wear-compensation through shape recovery to explain the adjustable friction behavior of thermal-responsive polymer from the aspect of shape recovery and energy conversion. This study provides a high-performance friction material and paves the route for the application of shape memory polymer (SMP) in tribology field with tunable property.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.