Abstract
This study focused on the development of a polyethylene biomaterial for replacement of the joints like knee joints, etc. Through forming aluminum oxide and titanium oxide particles into ultra-high molecular polyethylene, commonly known as high modulus polyethylene, this substance has strengthened its mechanical and wear properties. The composite is made using the injection molding machine by reinforcement materials like bio-inert aluminum oxide (Al2O3) and titanium di oxide (TiO2) with UHMWPE. Mechanical properties like Tensile, Bending, impact strength and hardness and wear rate of the synthesized polymer composite is tested according to ASTM standards.C3 composite shows enhancement in mechanical and tribological properties, only decrease in the impact strength is seen comparing to other two compositions. So C3 composite can be used as implant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Innovative Technology and Exploring Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.