Abstract

Over an algebraically closed field of characteristic zero simple Lie algebras admit outer automorphisms of order 3 if and only if they are of type D4. Moreover, thereare two conjugacy classes of such automorphisms. Among orthogonal Lie algebras over arbitrary fields of characteristic zero, only orthogonal Lie algebras relative to quadratic norm forms of Cayley algebras admit outer automorphisms of order 3. We give a complete list of conjugacy classes of outer automorphisms of order 3 for orthogonal Lie algebras over arbitrary fields of characteristic zero. For the norm form of a given Cayley algebra, one class is associated with the Cayley algebra and the others with central simple algebras of degree 3 with involution of the second kind such that the cohomological invariant of the involution is the norm form.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.