Abstract

Nuclear magnetic resonance-visible mobile lipids (ML) have been reported to accumulate during cell apoptosis in vitro and in vivo. The biogenesis, biochemical nature and structure of these lipids are still under debate. In this study, a human lymphoblastoid cell line, HuT 78, was induced to apoptosis by exposure to anti-Fas monoclonal antibodies (α-Fas mAb) followed by incubation for different time intervals (1–24 h, hypodiploid cell fraction, H, varying from 1% to over 60%) either in the presence or in the absence of 5.0 μM Triacsin C (TRC), specific inhibitor of long-chain acyl-CoA synthetase (ACS). The increase of ML in apoptotic cells correlated linearly with H and was associated with: (a) accumulation of intracellular lipid bodies, detected by confocal laser scanning microscopy in lipophilic dye-stained cells; (b) increases, detected by thin-layer chromatography in total lipid extracts, in the relative abundance of triacylglycerides (TAG) and cholesteryl esters (CE), with corresponding decreases of phospholipids (PL). TRC completely abolished both ML and lipid body formation in anti-Fas-treated apoptotic cells, with concomitant reversion of TAG, CE and PL to control levels, but did not alter cell viability nor did it inhibit apoptosis. ML signals detected during anti-Fas-induced apoptosis therefore appear to originate from neutral lipids assembled in intracellular lipid bodies, synthesised from cellular acyl-CoA pools.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.