Abstract

A highly flexible, mechanically and chemically stable copolymer, tri(propylene glycol) glycerolate diacrylate cross-linked polystyrene (PS-TRPGGDA), was synthesized by the suspension polymerization and employed as a solid support for peptide synthesis. The beaded polymer support containing secondary hydroxyl functional groups in the cross-linker was used as the growth site for peptide synthesis. The procedure is unique and cost-effective in that it avoids the initial functionalization steps required for most of the styrene-based polymer supports. The resin was characterized by 13C-CP-MAS NMR spectroscopy and the morphologic features of the resin were investigated using scanning electron microscopy. Swelling studies conducted on the new support revealed that the PS-TRPGGDA resin undergoes more effective swelling and solvation than PS-DVB resin in all solvents used in peptide synthesis. The efficiency of the new support was demonstrated by synthesizing a 'difficult' sequence Ala-Arg-(Ala)6-Lys and comparing it with commercially available Merrifield and Sheppard resins. The synthetic efficiency was further demonstrated by the synthesis of a 24-residue NR 2A peptide substrate of calcium/calmodulin-binding peptide. The high yield and purity of the peptide synthesized on the novel support indicates the positive role of the flexible and hydrophilic cross-linking agent in the solid support.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.