Abstract

Decabromodiphenyl ether (DecaBDE) is a brominated flame retardant belonging to the group of polybrominated diphenyl ethers. DecaBDE has been widely used for various applications, such as plastics, textiles, and building and construction materials. Limited information on DecaBDE production and usage inventory has been elaborated, however. Therefore, this work aimed to produce a preliminary emissions inventory of DecaBDE in mainland China by estimating production and consumption amounts of DecaBDE, and characterizing its emission factors during production and usage, based on industrial investigation and theoretical prediction. It was indicated that the total production of DecaBDE reached 464.68 thousand metric tons (kt), of which 62.72 kt were exported, since the beginning of its production. Shandong and Jiangsu provinces dominate the production, with proportions of 77.95% and 18.45%, respectively. The production stage releases most of the DecaBDE to the atmosphere, with an emissions factor of 23 ± 1.9 kg/t, followed by 20 ± 0.9 kg/t DecaBDE to waste water and 16 ± 1.0 kg/t DecaBDE as solid residue. DecaBDE emissions in the consumption stage—namely the plastic production process—are 0.17 ± 0.06–0.23 ± 0.08 kg DecaBDE to the atmosphere and 1.72 ± 0.58–2.29 ± 0.77 kg DecaBDE to solid residue, for each metric ton of plastic produced. The total annual DecaBDE emissions to waste water are 93.98–1140.9 mg—negligible. The results showed that the sources of DecaBDE environmental pollution are its manufacturing and flame-retardant plastic modification plants, which are easily overlooked by both the government and the public. Yet DecaBDE emissions elimination and the environmentally sound management of the DecaBDE waste generated from these two processes are crucial for environmental protection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.