Abstract

This study used the RClimDex software to examine trends in extreme air temperature and rainfall in the Black Volta River Basin (BVRB) for the present (1981–2010) and future 2051–2080 (late twenty-first century) horizons. The analysis of the future extreme events was conducted using data output of four ensemble models for two IPCC emission scenarios, Representative Concentration Pathways (RCPs) 4.5 and 8.5. A bias correction method, the quantile-quantile (Q-Q) transformation technique, was applied to all the modelled temperature and rainfall data set prior to the index calculation. The results of analysis of the present-day climate indicate warming and wetting of the BVRB. Increasing trends were seen in the extreme warm indices while the extreme cold indices showed mostly decreasing trends. Majority of the trends observed in the indices were statistically significant (95% confidence level). The extremes in rainfall also showed increasing trends in amounts and intensity of rainfall events (majority of increasing trends were statistically insignificant). Projected temperatures for the late twenty-first century showed decreasing and increasing trends in the cold and warm indices respectively, suggesting warming during the period. Trend analysis of future rainfall projections mostly showed a mix of positive and negative trends offering no clear indication of the direction of change in majority of the extreme rainfall indices. An increase in extremely wet day events is however projected for the period. The results from this study could inform climate change adaptation strategies targeted at reducing vulnerability and building resilience to extreme weather events in the BVRB.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.