Abstract

Deep Learning models hold state-of-the-art performance in many fields, but their vulnerability to adversarial examples poses a threat to their ubiquitous deployment in practical settings. Additionally, adversarial inputs generated on one classifier have been shown to transfer to other classifiers trained on similar data, which makes the attacks possible even if model parameters are not revealed to the adversary. This property of transferability has not yet been systematically studied, leading to a gap in our understanding of robustness of neural networks to adversarial inputs. In this work, we study the effect of network architecture, %initialization, optimizer, input, weight and activation quantization on transferability of adversarial samples. We also study the transferability of different attacks. Our experiments reveal that transferability is significantly hampered by input quantization and architectural mismatch between source and target, %is unaffected by initialization but% and the choice of optimizer turns out to be critical. We observe that transferability is architecture-dependent for both weight and activation quantized models. To quantify transferability, we use simple metric and demonstrate the utility of the metric in designing a methodology to build ensembles with improved adversarial robustness. When attacking ensembles we observe that ``gradient domination" by a single ensemble member model hampers existing attacks. To combat this we propose a new state-of-the-art ensemble attack. We compare the proposed attack with existing attack techniques to show its effectiveness. Finally, we show that an ensemble consisting of carefully chosen diverse networks achieves better adversarial robustness than would otherwise be possible with a single network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.