Abstract

The electron affinities (EAs) of a series of ·C6H5-xFx (1 ≤ x ≤ 4) fluorophenyl radicals are determined from the photoelectron spectra of their associated fluorophenide anions generated from C6H6-xFx (1 ≤ x ≤ 4) fluorobenzene precursors. The spectra show a near-linear incremental increase in EA of 0.4 eV/x. The spectra exhibit vibrationally unresolved and broad detachment transitions consistent with significant differences in the molecular structures of the anion and neutral radical species. The experimental EAs and broad spectra are consistent with density functional theory calculations on these species. While the anion detachment transitions all involve an electron in a non-bonding orbital, the differences in structure between the neutral and anion are in part due to repulsion between the lone pair on the C-center on which the excess charge is localized and neighboring F atoms. The C6H5-xFx- (2 ≤ x ≤ 4) spectra show features at lower binding energy that appear to be due to constitutional isomers formed in the ion source.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.