Abstract

Extracellular fungal cellobiases develop large stable aggregates by reversible concentration driven interaction. In-vitro addition of trehalose resulted in bigger cellobiase assemblies with increased stability against heat and dilution induced dissociation. In presence of 0.1 M trehalose, the size of aggregates increased from 344 nm to 494 nm. The increase in size was also observed in zymography of cellobiase. Activation energy of the trehalose stabilised enzyme (Ea = 220.9 kJ/mol) as compared to control (Ea = 257.734 kJ/mol), suggested enhanced thermostability and also showed increased resistance to chaotropes. Purified cellobiase was found to contain 196.27 μg of sugar/μg of protein. It was proposed that presence of glycan on protein's surface impedes and delays trehalose docking. Consequently, self-association of cellobiase preceded coating by trehalose leading to stabilisation of bigger cellobiase aggregates. In unison with the hypothesis, ribosylated BSA failed to get compacted by trehalose and developed into bigger aggregates with average size increasing from 210 nm to 328 nm. Wheat Germ Lectin, in presence of trehalose, showed higher molecular weight assemblies in DLS, native-PAGE and fluorescence anisotropy. This is the first report of cross-linking independent stabilisation of purified fungal glycosidases providing important insights towards understanding the aggregation and stability of glycated proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.