Abstract

The unsatisfactory performance of Zn metal anodes significantly impedes the commercial application of aqueous zinc-ion batteries (AZIBs). Herein, we introduce a trace amount of a multifunctional trehalose additive to enhance the stability and reversibility of Zn metal anodes. The trehalose additive exhibits a stronger Zn2+ ion affinity due to abundant lone-pair electrons, disrupting hydrogen bonds in H2O, regulating solvation structures, and tuning the Zn-electrolyte interface. Consequently, the Zn metal anode demonstrates a remarkable Coulombic efficiency of 99.80% and a cycle stability exceeding 4500 h at 1 mA cm-2. Even under stringent conditions of 10 mA cm-2, the Zn metal anode maintains a cumulative capacity of 2500 mA h cm-2 without a short circuit. Furthermore, Zn//Zn symmetric batteries exhibit excellent low-temperature cycle performance (over 400 h at -10 °C). As a proof of concept, assembled Zn//NH4V4O10 and Zn//MnO2 pouch cells demonstrate an improved electrochemical performance. This work presents an electrolyte additive strategy for achieving stable zinc anode operation in AZIBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.