Abstract
The authors apply a lossy compression algorithm to medical images, and quantify the quality of the images by the diagnostic performance of radiologists, as well as by traditional signal-to-noise ratios and subjective ratings. The authors' study is unlike previous studies of the effects of lossy compression in that they consider nonbinary detection tasks, simulate actual diagnostic practice instead of using paired tests or confidence rankings, use statistical methods that are more appropriate for nonbinary clinical data than are the popular receiver operating characteristic curves, and use low-complexity predictive tree-structured vector quantization for compression rather than DCT-based transform codes combined with entropy coding. The authors' diagnostic tasks are the identification of nodules (tumors) in the lungs and lymphadenopathy in the mediastinum from computerized tomography (CT) chest scans. Radiologists read both uncompressed and lossy compressed versions of images. For the image modality, compression algorithm, and diagnostic tasks the authors consider, the original 12 bit per pixel (bpp) CT image can be compressed to between 1 bpp and 2 bpp with no significant changes in diagnostic accuracy. The techniques presented here for evaluating image quality do not depend on the specific compression algorithm and are useful new methods for evaluating the benefits of any lossy image processing technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.