Abstract

Future climates are likely to include extreme events, which in turn have great impacts on ecological systems. In this study, we investigated possible effects that could mitigate stem breakage caused by a rare and extreme ice storm in a Chinese subtropical forest across a gradient of forest diversity. We used Bayesian modeling to correct stem breakage for tree size and variance components analysis to quantify the influence of taxon, leaf and wood functional traits, and stand level properties on the probability of stem breakage. We show that the taxon explained four times more variance in individual stem breakage than did stand level properties; trees with higher specific leaf area (SLA) were less susceptible to breakage. However, a large part of the variation at the taxon scale remained unexplained, implying that unmeasured or undefined traits could be used to predict damage caused by ice storms. When aggregated at the plot level, functional diversity and wood density increased after the ice storm. We suggest that for the adaption of forest management to climate change, much can still be learned from looking at functional traits at the taxon level.

Highlights

  • A widely predicted effect of climate change is an increase in the frequency of extreme weather events [1]

  • We examine how biodiversity affects tree stem breakage caused by an extreme, rare ice storm event in a highly diverse forest in subtropical China at the level of the tree, the taxon and the forest stand

  • We quantified the effect of tree biodiversity and functional trait identity on the probability of damage following a rare, extreme climate event, an ice storm in South-East China in 2008

Read more

Summary

Introduction

A widely predicted effect of climate change is an increase in the frequency of extreme weather events [1]. Extreme climate events shape ecological communities and affect plant physiological processes that regulate ecosystem functioning [2,3]. It is still unclear whether aspects of biological diversity can in turn mitigate or influence the impacts of extreme climate events. We examine how biodiversity affects tree stem breakage caused by an extreme, rare ice storm event in a highly diverse forest in subtropical China at the level of the tree, the taxon and the forest stand. Since experimental studies on impacts of extreme weather events on forests are hardly feasible, we make use of an a-priori scheme for selecting plots that achieves a uniform distribution of diversity similar to comparative experiments

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.