Abstract

Tropical forest conservation and management can significantly benefit from information about the spatial distribution of tree species. Very-high resolution (VHR) spaceborne platforms have been hailed as a promising technology for mapping tree species over broad spatial extents. WorldView-3, the most advanced VHR sensor, provides spectral data in 16 bands covering the visible to near-infrared (VNIR, 400–1040 nm) and shortwave-infrared (SWIR, 1210–2365 nm) wavelength ranges. It also collects images at unprecedented levels of details using a panchromatic band with 0.3-m of spatial resolution. However, the potential of WorldView-3 at its full spectral and spatial resolution for tropical tree species classification remains unknown. In this study, we performed a comprehensive assessment of WorldView-3 images acquired in the dry and wet seasons for tree species discrimination in tropical semi-deciduous forests. Classification experiments were performed using VNIR individually and combined with SWIR channels. To take advantage of the sub-metric resolution of the panchromatic band for classification, we applied an individual tree crown (ITC)-based approach that employed pan-sharpened VNIR bands and gray level co-occurrence matrix texture features. We determined whether the combination of images from the two annual seasons improves the classification accuracy. Finally, we investigated which plant traits influenced species detection. The new SWIR sensing capabilities of WorldView-3 increased the average producer’s accuracy up to 7.8%, by enabling the detection of non-photosynthetic vegetation within ITCs. The combination of VNIR bands from the two annual seasons did not improve the classification results when compared to the results obtained using images from each season individually. The use of VNIR bands at their original 1.2-m spatial resolution yielded average producer’s accuracies of 43.1 ± 3.1% and 38.8 ± 3% in the wet and dry seasons, respectively. The ITC-based approach improved the accuracy to 70 ± 8% in the wet and 68.4 ± 7.4% in the dry season. Texture analysis of the panchromatic band enabled the detection of species-specific differences in crown structure, which improved species detection. The use of texture analysis, pan-sharpening, and ITC delineation is a potential approach to perform tree species classification in tropical forests with WorldView-3 satellite images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.