Abstract

Forests and snow covered regions frequently co-occur across the northern hemisphere. In these environments, forests are structurally and spatially complex mosaics of tree neighborhoods that are intrinsically linked to ecosystem functions. Tree and canopy structures influence snow accumulation and disappearance processes through interception and radiation attenuation. However, it is unclear if spatial heterogeneity within the forest canopy induces heterogeneity in snow accumulation and persistence. We quantitatively identified different tree neighborhoods and tested the differential effects of these within-stand neighborhoods on snow processes. Neighborhood types included individual ponderosa pine (Pinus ponderosa), Douglas-fir (Pseudotsuga menziesii) and western larch (Larix occidentalis) trees, dense overstory tree clumps, openings, and regeneration patches. Intensive measurements of snow accumulation (density and depth) and persistence (disappearance date) were made within replicate neighborhoods for three years. Overall, neighborhood type and year had a significant effect on accumulation and snow disappearance. Openings were significantly different from clumps and individuals, always accumulating more snow. Openings retained snow significantly later than clumps but were not significantly different from individuals. Within the individual tree neighborhood type, a nested species effect indicated no differences in accumulation but significant differences in disappearance between deciduous and evergreen conifers, with snow persisting longer beneath deciduous western larch. Our results suggest that canopy interception is the primary mechanism driving the accumulation phase, while snow disappearance patterns are largely a consequence of spatial variation of longwave radiation. Reducing canopy interception and longwave radiation by increasing the abundance of widely spaced single trees and small openings with silvicultural treatments should increase snow depth and duration, and thus snow water storage. Maintaining a heterogeneous canopy structure that includes tree clumps can be used to meet multiple objectives such as provision of ungulate winter range habitat, and heterogenous understory plant phenology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.