Abstract

Using conventional pesticides in crop protection has raised serious environmental concerns and there is therefore a need for integrated pest management (IPM) methods. In this paper, we found that the spacing of trees can impact disease, which could result in a reduction in pesticide applications and may act as a potential IPM method. We studied Frosty Pod Rot (FPR) in 20 cacao agroforests in Costa Rica (Upala region). Using a generalized linear mixed model, we analyzed the impact of the neighborhood composition and distance from a studied cacao individual on its individual FPR incidence. We found that the number of cacao tree neighbors in a radius of 3.7 m and the number of fruit trees in a radius of 4.3 m had a significant negative influence on the incidence of FPR on individual cacao trees. Moreover, cacao tree neighbors had the most significant local influence compared to the neighborhood of other taller categories such as fruit or forest trees. The mechanisms involved are related to the barrier effect, due to the effectiveness of the cacao tree's architecture as an efficient barrier against FPR spore dispersal. This paper provides new insights into optimization of the spatial environment around each host as an original IPM method. © 2017 Society of Chemical Industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.