Abstract

Changes in the global temperature and precipitation regime have been significantly driving species responses, notably in sensitive areas such as the Himalayas. By conducting a study at two high altitude (3200–4100 m) valleys (Langtang and Tsum) situated in the central part of the Nepal Himalayas, we presented tree-ring width site chronologies for two Larix species (Larix griffithii and L. himalaica) for the first time. The longest chronology spans from 1771 to 2015 AD and showed a recent decline in the growth of Larix species in both sites, controlled mainly by drought. Tree growth showed a negative response to temperature and a positive response to precipitation, indicating that moisture stress is limiting the growth of the species. Based on the Larix ring width chronology statistics and climate response results, these species have good potential for past climate reconstruction such as temperature, rainfall or drought indices. Also, the study revealed that the Himalayan endemic Larix species investigated are promising for tree-ring based multi-aspect environmental change studies in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.