Abstract
Discovering semantic knowledge is significant for understanding and interpreting how people interact in a meeting discussion. In this paper, we propose a mining method to extract frequent patterns of human interaction based on the captured content of face-to-face meetings. Human interactions, such as proposing an idea, giving comments, and expressing a positive opinion, indicate user intention toward a topic or role in a discussion. Human interaction flow in a discussion session is represented as a tree. Tree-based interaction mining algorithms are designed to analyze the structures of the trees and to extract interaction flow patterns. The experimental results show that we can successfully extract several interesting patterns that are useful for the interpretation of human behavior in meeting discussions, such as determining frequent interactions, typical interaction flows, and relationships between different types of interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Knowledge and Data Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.