Abstract
Attenuation of blood-brain barrier (BBB) disruption is one of the therapeutic candidates for treatment of subarachnoid hemorrhage (SAH). In this study, the protective effect of sodium orthovanadate (SOV) on BBB disruption was investigated in SAH using the endovascular perforation model. Fifty-five rats were randomly assigned to sham-operated, SAH treated with saline (as a vehicle), or 10 mg/kg SOV groups and were evaluated for neurofunction and Evans blue dye extravasation. The phosphorylation of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and mitogen-activated protein kinase (MAPK) and the expression of matrix metalloproteinase-9 (MMP-9), occludin, and collagen-IV were examined by Western blot analyses. Cell death among endothelial cells was revealed by immunofluorescence and terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end-labeling staining. SOV significantly improved neurofunction and reduced Evans blue dye extravasation in brains after SAH. SOV phosphorylated PTEN, decreased phospho-JNK and MMP-9, and preserved occludin expression. SOV also attenuated SAH-induced capillary endothelial cell death. The current study showed that SOV was protective against BBB disruption after SAH, possibly via PTEN phosphorylation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.