Abstract

Low concentrations of carbon monoxide (CO) can protect tissues against ischemia-reperfusion (I-R) injury. We have recently identified a novel class of compounds, CO-releasing molecules (CO-RMs), which exert important pharmacological activities by carrying and delivering CO to biological systems. Here, we examined the possible beneficial effects of CO liberated from CO-RMs on the damage inflicted by cold storage and I-R in isolated perfused kidneys. Hemodynamic and biochemical parameters as well as mitochondrial respiration were measured in isolated perfused rabbit kidneys that were previously flushed with CO-RMs and stored at 4 degrees C for 24 h. Two water-soluble CO-RMs were tested: (1) sodium boranocarbonate (CORM-A1), a boron-containing carbonate that releases CO at a slow rate, and (2) tricarbonylchloro(glycinato)ruthenium(II) (CORM-3), a transition metal carbonyl that liberates CO very rapidly in solution. Kidneys flushed with Celsior solution supplemented with CO-RMs (50 microM) and stored at 4 degrees C for 24 h displayed at reperfusion a significantly higher perfusion flow rate (PFR), glomerular filtration rate, and sodium and glucose reabsorption rates compared to control kidneys flushed with Celsior solution alone. Addition of 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one (ODQ), a guanylate cyclase inhibitor, prevented the increase in PFR mediated by CO-RMs. The respiratory control index from kidney mitochondria treated with CO-RMs was also markedly increased. Notably, renal protection was lost when kidneys were flushed with Celsior containing an inactive compound (iCO-RM), which had been deliberately depleted of CO. CO-RMs are effective therapeutic agents that deliver CO during kidney cold preservation and can be used to ameliorate vascular activity, energy metabolism and renal function at reperfusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.