Abstract
Simple SummarySuccessful treatment of hematological malignancies with chimeric antigen receptors T (CAR-T) cells has led to much enthusiasm for the wide clinical usage and development of novel CAR-T therapies. However, it also challenges physicians and investigators to recognize and deal with treatment-associated toxicities. We conducted a systematic review and meta-analysis from 84 eligible study and a total of 2592 patients to identify the comprehensive incidences and severity of CRS and neurological symptoms (NS) as well as the potential differences in AEs across a variety of cancer types, CAR-T targets, and other factors, thereby offering a significant implication on its future application and research.Chimeric antigen receptors T (CAR-T) cell therapy of cancer is a rapidly evolving field. It has been shown to be remarkably effective in cases of hematological malignancies, and its approval by the FDA has significantly increased the enthusiasm for wide clinical usage and development of novel CAR-T therapies. However, it has also challenged physicians and investigators to recognize and deal with treatment-associated toxicities. A total of 2592 patients were included from 84 eligible studies that were systematically searched and reviewed from the databases of PubMed, de, the American Society of Hematology and the Cochrane Library. The meta-analysis and subgroup analysis by a Bayesian logistic regression model were used to evaluate the incidences of therapy-related toxicities such as cytokine release syndrome (CRS) and neurological symptoms (NS), and the differences between different targets and cancer types were analyzed. The pooled all-grade CRS rate and grade ≥ 3 CRS rate was 77% and 29%, respectively, with a significantly higher incidence in the hematologic malignancies (all-grade: 81%; grade ≥ 3: 29%) than in solid tumors (all-grade: 37%; grade ≥ 3: 19%). The pooled estimate NS rate from the individual studies were 40% for all-grade and 28% for grade ≥ 3. It was also higher in the hematologic subgroup than in the solid tumors group. The subgroup analysis by cancer type showed that higher incidences of grade ≥ 3 CRS were observed in anti-CD19 CAR-T therapy for ALL and NHL, anti-BCMA CAR-T for MM, and anti-CEA CAR-T for solid tumors, which were between 24–36%, while higher incidences of grade ≥ 3 NS were mainly observed in CD19-ALL/NHL (23–37%) and BCMA-MM (12%). Importantly, subgroup analysis on anti-CD19 CAR-T studies showed that young patients (vs. adult patients), allologous T cell origin (vs. autologous origin), gamma retrovirus vector, and higher doses of CAR-T cells were associated with high-grade CRS. On the other hand, the patients with NHL (vs ALL), administered with higher dose of CAR-T, and adult patients (vs. young patients) had an increased incidence of grade ≥ 3 NS events. This study offers a comprehensive summary of treatment-related toxicity and will guide future clinical trials and therapeutic designs investigating CAR T cell therapy.
Highlights
Chimeric antigen receptor T (CAR-T) cell therapy employs autologous or allogeneic genetically engineered T cells for combatting cancer
Previous meta-analysis focused on certain adverse events (AEs) such as incidence of Cytokine-release syndrome (CRS) and neurological symptoms (NS), but most of them focused on the summary of a single target or disease such as CD19 CAR-T and B-acute lymphoblastic leukemia (ALL)
The growing clinical trial and application of CAR-T therapy highlight the importance of the recognition and management of its unique toxicity profile
Summary
Chimeric antigen receptor T (CAR-T) cell therapy employs autologous or allogeneic genetically engineered T cells for combatting cancer. It has demonstrated unexpected success in treatment-refractory patients. CAR-T cell therapy has a unique set of toxicities related to the activation of the immune system. It is distinct from chemotherapies, targeted small molecule drugs, and other immunotherapies. Cytokine-release syndrome (CRS), CAR-T-cell-related encephalopathy syndrome (CRES), and other adverse events (AEs) occurring after CAR-T cell treatment should be considered in clinical practice. We performed a systematic review and meta-analysis of published clinical trials on the treatment-related AEs that occurred early after CAR T-cell infusion. We quantified potential differences in AEs across a variety of cancer types, CAR-T targets, and other factors, thereby offering a significant implication on its future application and research
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.