Abstract

Background and purposePatients with lower-grade gliomas are long-term survivors after radiotherapy and may benefit from the reduced dose to normal tissue achievable with proton therapy. Here, we aimed to quantify differences in dose to the uninvolved brain and contralateral hippocampus and compare the risk of radiation-induced secondary cancer for photon and proton plans for lower-grade glioma patients.Materials and methodsTwenty-three patients were included in this in-silico planning comparative study and had photon and proton plans calculated (50.4 Gy(RBE = 1.1), 28 Fx) applying similar dose constraints to the target and organs at risk. Automatically calculated photon plans were generated with a 3 mm margin from clinical target volume (CTV) to planning target volume. Manual proton plans were generated using robust optimisation on the CTV. Dose metrics of organs at risk were compared using population mean dose-volume histograms and Wilcoxon signed-rank test. Secondary cancer risk per 10,000 persons per year (PPY) was estimated using dose-volume data and a risk model for secondary cancer induction.ResultsCTV coverage (V95%>98%) was similar for the two treatment modalities. Mean dose (Dmean) to the uninvolved brain was significantly reduced from 21.5 Gy (median, IQR 17.1–24.4 Gy) with photons compared to 10.3 Gy(RBE) (8.1–13.9 Gy(RBE)) with protons. Dmean to the contralateral hippocampus was significantly reduced from 6.5 Gy (5.4–11.7 Gy) with photons to 1.5 Gy(RBE) (0.4–6.8 Gy(RBE)) with protons. The estimated secondary cancer risk was reduced from 6.7 PPY (median, range 3.3–10.4 PPY) with photons to 3.0 PPY (1.3–7.5 PPY) with protons.ConclusionA significant reduction in mean dose to uninvolved brain and contralateral hippocampus was found with proton planning. The estimated secondary cancer risk was reduced with proton therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.