Abstract

Column experiments and numerical simulations were conducted to evaluate the effects of Cr(VI) and dissolved CaCO(3) on the iron reactivity towards trichloroethene (TCE) and Cr(VI) reduction. Column experiments included measurements of iron corrosion potential and characterization of surface film composition using Raman spectroscopy. Three columns received different combinations of TCE (5 mg L(-1)), Cr(VI) (10 mg L(-1)) and dissolved CaCO(3) (300 mg L(-1)), after short periods of conditioning with Millipore water followed by 10 mg L(-1) TCE in Millipore water, for a total of 8 months. The results showed that co-existence with TCE did not affect Cr(VI) reduction kinetics, however, the presence of Cr(VI) reduced TCE degradation rates significantly. The formation of Fe(III)/Cr(III) products caused progressive passivation of the iron and was consistent with the increase in corrosion potential. The presence of dissolved CaCO(3) resulted in a stable corrosion potential and faster degradation rates of TCE and Cr(VI). Over time, however, the accumulation of secondary carbonate minerals on the iron surface decreased the iron reactivity. Numerical simulation using a reactive transport model reproduced the observations from the column experiments reasonably well. The simulation can be valuable in the design of PRBs or in the development of effective maintenance procedures for PRBs treating groundwater co-contaminated with Cr(VI) and TCE in the presence of dissolved CaCO(3).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.