Abstract

The pre-treatment of olive mill effluents (OME) by means of coagulation–flocculation coupling various inorganic materials and organic poly-electrolytes was investigated. Tests were conducted with two different OME with chemical oxygen demand (COD) contents of 61.1 and 29.3 g/L, total suspended solids (TSS) of 36.7 and 52.7 g/L and total phenolic contents (TP) of 3.5 and 2.5 g/L, respectively. Inorganic materials such as lime, iron, magnesium and aluminum as well as four cationic and two anionic commercial poly-electrolytes were employed either alone or in various combinations and screened with respect to their efficiency in terms of TSS, TP and COD removal, the amount of sludge produced and the phytotoxicity of the resulting liquid to lettuce seeds. Coupling lime or ferrous sulphate (in the range of several g/L) with cationic poly-electrolytes (in the range of 200–300 mg/L) led to quantitative TSS removal, while COD and TP removal varied between about 10–40% and 30–80%, respectively, depending on the materials and the effluent in question; separation efficiency generally decreased with decreasing coagulant and/or flocculant concentration. To enhance organic matter degradation, iron-based coagulation was coupled with H 2O 2, thus simulating a Fenton reaction and this increased COD reduction to about 60%. The original, untreated OME was strongly phytotoxic to lettuce seeds even after several dilutions with water; however, phytotoxicity decreased considerably following treatment with lime and cationic poly-electrolytes; this was attributed to the removal of phenols and other phytotoxic species from the liquid phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.